1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
| """ 题目:遗传算法 示例:寻找函数 y = a^2 + b^2 + c^3 + d^4 在[1,30]之间的最大值 备注:此算法仅为demo,有较大缺陷,后需改进 """
import random from operator import itemgetter
class Gene: """ 名称:Gene类 描述:这个类只有一个初始化方法,该方法就是获得基因里面的内容和大小, 在这个例子中,内容就是[1,30]之间的任意4个数字组成的列表 """ def __init__(self, **data): self.__dict__.update(data) self.size = len(data['data'])
class GA: """ 名称:GA类 描述:这个类包括遗传算法的所有操作方法 __init__ :初始化参数,包括自变量可取的最大值,最小值,种群大小,交叉率,变异率和繁殖代数 evaluate :该方法作为适应度函数评估该个体的函数值,在这里就是函数y的值 selectBest :挑选出当前代种群中的最好个体作为历史记录 selection :按照概率从上一代种群中选择个体,直至形成新的一代 crossoperate :实现交叉操作 mutation :实现变异操作 GA_main :实现整个算法的循环 """
def __init__(self, parameter): self.parameter = parameter low = self.parameter[4] up = self.parameter[5] self.bound = [] self.bound.append(low) self.bound.append(up)
pop = [] for i in range(self.parameter[3]): geneinfo = [] for pos in range(len(low)): geneinfo.append(random.randint(self.bound[0][pos], self.bound[1][pos])) fitness = self.evaluate(geneinfo) pop.append({'Gene': Gene(data=geneinfo), 'fitness': fitness}) self.pop = pop self.bestindividual = self.selectBest(self.pop)
def evaluate(self, geneinfo): a = geneinfo[0] b = geneinfo[1] c = geneinfo[2] d = geneinfo[3] y = a**2 + b**2 + c**3 + d**4 return y
def selectBest(self, pop): s_inds = sorted(pop, key=itemgetter("fitness"), reverse=True) return s_inds[0]
def selection(self, individuals, k): s_inds = sorted(individuals, key=itemgetter("fitness"), reverse=True) sum_fits = sum(ind['fitness'] for ind in individuals)
chosen = [] for i in range(k): u = random.random() * sum_fits sum_ = 0 for ind in s_inds: sum_ += ind['fitness'] if sum_ >= u: chosen.append(ind) break chosen = sorted(chosen, key=itemgetter("fitness"), reverse=False) return chosen
def crossoperate(self, offspring): dim = len(offspring[0]['Gene'].data)
geneinfo1 = offspring[0]['Gene'].data geneinfo2 = offspring[1]['Gene'].data
if dim == 1: pos1 = 1 pos2 = 1 else: pos1 = random.randrange(1, dim) pos2 = random.randrange(1, dim) newoff1 = Gene(data=[]) newoff2 = Gene(data=[]) temp1 = [] temp2 = [] for i in range(dim): if min(pos1, pos2) <= i < max(pos1, pos2): temp2.append(geneinfo2[i]) temp1.append(geneinfo1[i]) else: temp2.append(geneinfo1[i]) temp1.append(geneinfo2[i]) newoff1.data = temp1 newoff2.data = temp2
return newoff1, newoff2
def mutation(self, crossoff, bound): dim = len(crossoff.data)
if dim == 1: pos = 0 else: pos = random.randrange(0, dim) crossoff.data[pos] = random.randint(bound[0][pos], bound[1][pos]) return crossoff
def GA_main(self): popsize = self.parameter[3] print("@@遗传算法开始@@") for g in range(NGEN): print(f"****第{g}代****") selectpop = self.selection(self.pop, popsize) nextoff = [] while len(nextoff) != popsize: offspring = [selectpop.pop() for _ in range(2)]
if random.random() < CXPB: crossoff1, crossoff2 = self.crossoperate(offspring) if random.random() < MUTPB: muteoff1 = self.mutation(crossoff1, self.bound) muteoff2 = self.mutation(crossoff2, self.bound) fit_muteoff1 = self.evaluate(muteoff1.data) fit_muteoff2 = self.evaluate(muteoff2.data) nextoff.append({'Gene': muteoff1, 'fitness': fit_muteoff1}) nextoff.append({'Gene': muteoff2, 'fitness': fit_muteoff2}) else: fit_crossoff1 = self.evaluate(crossoff1.data) fit_crossoff2 = self.evaluate(crossoff2.data) nextoff.append({'Gene': crossoff1, 'fitness': fit_crossoff1}) nextoff.append({'Gene': crossoff2, 'fitness': fit_crossoff2}) else: nextoff.extend(offspring) self.pop = nextoff fits = [ind['fitness'] for ind in self.pop] best_ind = self.selectBest(self.pop) if best_ind['fitness'] > self.bestindividual['fitness']: self.bestindividual = best_ind print(f"最佳个体:{self.bestindividual['Gene'].data},{self.bestindividual['fitness']}") print(f"当前最大适应度:{max(fits)}")
print("@@遗传算法结束@@")
""" main函数后面设置所有参数 CXPB(交叉概率):0.8 MUTPB(变异概率):0.1 NGEN(繁殖代数):1000 popsize(每代种群大小):100 """ if __name__ == "__main__": CXPB, MUTPB, NGEN, popsize = 0.8, 0.1, 1000, 100 up = [30, 30, 30, 30] low = [1, 1, 1, 1] parameter = [CXPB, MUTPB, NGEN, popsize, low, up] run = GA(parameter) run.GA_main()
|